Operational – Novotek Ideas Hub https://ideashub.novotek.com Ideas Hub Fri, 28 Oct 2022 13:59:54 +0000 en-US hourly 1 https://wordpress.org/?v=5.7.11 https://ideashub.novotek.com/wp-content/uploads/2021/03/Novotek-logo-thumb-150x150.png Operational – Novotek Ideas Hub https://ideashub.novotek.com 32 32 What SCADA Evolution Means for Developers https://ideashub.novotek.com/what-scada-evolution-means-for-developers/ Fri, 28 Oct 2022 13:58:37 +0000 https://ideashub.novotek.com/?p=3296

If you’ve walked through factories and seen operator or supervisor screens like the one below, you’re actually seeing both the best and worst aspects of technology evolution! Clearly, no data is left hidden within the machine or process, but screen design looks to have been driven by the abililty to visualiase what’s available from the underlying controls, rather than a more nuanced view of how to support different people in their work. you could say that the adoption of modern design approaches to building a “good” HMI or SCADA application has lagged what the underlying tools can support.

One place to configure & manage for SCADA, Historian, Visualisation

In Proficy iFIX, GE Digital has incorporated a mix of development acceleration and design philosophies that can both lead to more effective user experiences with a deployed system, while also making the overall cost of building, maintaining, and adapting a SCADA lower.

Three critical elemetns stand out:

1. Model-centric design

This brings object-oriented developement principles to SCADA and related applications. With a “home” for standrad definitions of common assets, and their related descriptibe and attribute data, OT teams can create reusable application components that are quick to deploy for each physical instance of a type. The model also provides useful application foundations, so things like animations, alarm filters and so on can be defined as appropriate for a class or type – and thereofore easily rolled out into the screens where instances of each type are present. And with developments in the GE site making the model infrastructure available to Historain, analytics and MED solutions, work done once can defray the cost and effort needed in related programs.

2. Centralised, web-based administation and development

In combination with the modelling capability, this offers a big gain in productivity for teams managing multiple instances of SCADA. With common object definitions, and standard screen templates, the speed at which new capabilites or chages to exisiting footprints can be built, tested, and rolled out means a huge recovery of time for skilled personnel.

3. The subtle side of web-based clients

Many older application have large bases of custom scripting – in many cases to enable interaction with data sources outside the SCADA, drive non-standard animations, or to enable conditional logic. With the shift to web-based client technology, the mechanics for such functions are shifting to more configurable object behaviours, and to server-side functions for data integrations. These mean simipler, more maintainable, and less error prone deployments.

Taking advantage of what current-generation iFIX offers will mean a different development approach – considering useful asset and object model structure, then templating the way objects should be deployed is a new starting point for many. But with that groundwork laid, the speed to a final solution is in many (most!) cases, faster than older methodologies – and that’s beofer considering the advantage of resuability across asset types, or across multiple servers for different lines or sites.

Recovered time buys room for other changes

With rich automation data mapped to the model, and faster methods to build and roll out screen, different users can have their views tailored to suit their regualr work. Our earlier screen example reflected a common belief that screen design is time-consuming, so best to put as much data as possible in one place so that operators, technicicans, maintenance and even improvement teams can all get what they need without excessive development effort. But that can mean a confused mashup of items that get in the way of managing the core process, and in turn actually hamper investigations when things are going wrong.

But where development time is less of a constraint, more streamlined views can be deployed to support core work processes, with increasing levels of detail exposed on other screen for more technical investigation or troubleshooting. Even without fully adopting GE Digital’s Efficient HMI design guidelines, firms can expect faster and more effective responses form operators and supervisors who don’t have to sift through complex, overloaded views simplu to maintain steady-state operators.

With significant gains to be had in terms of operator responsiveness, and effective management of expectations, the user experience itself can merit as much consideration as the under-the-bonent changes that benefit developers.

Greenfield vs. Brownfield

It may seem like adopting a model-based approach, and taking first steps with the new development environments would be easier on fresh new project, whereas an upgrade scenario should be addressed by “simply” porting forward old screens, the database, etc. But when you consider all that can be involved in that forward migration, the mix of things that need “just a few tweaks” can mean as much – or more – work than a fresh build of the system, where the old serves as a point of reference for design and user requirements.

The proess database is usually the easiest part of the configuration to migrate forward. Even if changing from legacy drivers to IGS or Kepware, these tend to be pretty quick. Most of the tradeoffs of time/budget for an overall better solution are related to screen (and related scripting) upgrades. From many (many!) upgrades we’ve observed our customers make, we see common areas where a “modernisation” rather than a migration can actully be more cost effective, as well as leaving users with a more satisfying solution.

Questions to consider include:

While there is often concen about whether modernisation can be “too much” change, it’s equally true that operators genuinely want to support their compaines in getting better. So if what they see at the end of an investment looks and feels the same way it always has, the chance to enable improvements may have been lost – and with it a chance to engage and energise employees who want to be a part of making things better.

Old vs. New

iFIX 2023 and the broader Proficy suite incorporating more modern tools, which in turn offer choices about methods and approahces. Beyond the technical enablement, enginerring and IT teams may find that exploring these ideas may offer benefit in areas as straightforward as modernising system to avoid obsolescene risk to making tangile progress on IoT and borader digital initiatives.

]]>
Are your PLCs an easy target? A mindset shift can significantly reduce PLC firmware vulnerabilities https://ideashub.novotek.com/are-your-plcs-an-easy-target-reduce-plc-firmware-vulnerabilities/ Thu, 25 Nov 2021 14:06:48 +0000 https://ideashub.novotek.com/?p=2917

Since the beginning of the COVID-19 pandemic, businesses across the UK have faced a surge in cybercrime. In fact, research indicates that UK businesses experienced one attempted cyberattack every 46 seconds on average in 2020. Industrial businesses are a prime target for hackers and the ramifications of a data breach or denial-of-service attack are far-reaching, making system security imperative. Here, David Evanson, corporate vendor relationship manager at Novotek UK and Ireland, explains how industrial businesses can keep their vital systems secure.

For many business leaders and engineers, it is still tempting to consider large multinational companies or data-rich digital service providers to be the prime target for hackers. However, the growing volume of cyberattacks on businesses globally show that any company can be a target of malicious attacks on systems and services.

According to research by internet service provider Beaming, there were 686,961 attempted system breaches among UK businesses in 2020, marking a 20 per cent increase on 2019. Of these attacks, Beaming noted that one in ten intended to gain control of an Internet of Things (IoT) device — something that indicates a tendency to target system continuity rather than conventional data.

Both factors together are cause for alarm among industrial businesses of all sizes. Hackers are targeting all manner of companies, from start-ups to global organisations, and focussing more on the growing number of internet-connected devices and systems that were previously isolated.

The consequences of a device being compromised range from data extraction to service shutdown, and in any case the financial and production impacts to an industrial business are significant. There is no single quick fix to bolster cybersecurity due to the varying types of hacks that can take place. Some cyberattacks are complex and sophisticated; others less so. Many attacks on devices tend to fall into the latter category, which means there are some steps industrial businesses can take to minimise risk.

Novotek has been working closely with industrial businesses in the UK and Ireland for decades. One common thing that we have observed with automation hardware and software is that many engineers do not regularly upgrade software or firmware. Instead, there is a tendency to view automation as a one-off, fit-and-forget purchase. The hardware may be physically maintained on a regular schedule, but the invisible software aspect is often neglected.

GE Fanuc Series 90-30

Older firmware is more susceptible to hacks because it often contains unpatched known security vulnerabilities, such as weak authentication algorithms, obsolete encryption technologies or backdoors for unauthorised access. For a programmable logic controller (PLC), older firmware versions make it possible for cyber attackers to change the module state to halt-mode, resulting in a denial-of-service that stops production or prevents critical processes from running.

PLC manufacturers routinely update firmware to ensure it is robust and secure in the face of the changing cyber landscape, but there is not always a set interval between these updates.

In some cases, updates are released in the days or weeks following the discovery of a vulnerability — either by the manufacturer, Whitehat hackers or genuine attackers — to minimise end-user risk. The firmware version’s upgrade information should outline any exploits that have been fixed.

However, it’s important to note that legacy PLCs may no longer receive firmware updates from the manufacturer if the system has reached obsolescence. Many engineers opt to air-gap older PLCs to minimise the cybersecurity risk, but the lack of firmware support can also create interoperability issues with connected devices. Another part of the network, such as a switch, receiving an update can cause communications and compatibility issues with PLCs running on older versions — yet another reason why systems should run on the most recent software patches.

At this stage, engineers should invest in a more modern PLC to minimise risk — and, due to the rate of advancement of PLCs in recent years, likely benefit from greater functionality at the same time.

Firmware vulnerabilities are unavoidable, regardless of the quality of the PLC. At Novotek, we give extensive support for the Emerson PACSystems products that we provide to businesses in the UK and Ireland. This involves not only support with firmware updates as they become available, but also guidance on wider system resilience to ensure that businesses are as safe as possible from hardware vulnerabilities. The growth in cyberattacks will continue long beyond the end of the COVID-19 pandemic, and infrastructure and automation are increasingly becoming targets. It may seem a simple step, but taking the same upgrade approach to firmware that we do with conventional computers can help engineers to secure their operations and keep running systems safely.

]]>
A recipe for lasting success https://ideashub.novotek.com/a-recipe-for-lasting-success/ Wed, 01 Sep 2021 11:03:50 +0000 https://ideashub.novotek.com/?p=2802 Few businesses routinely challenge every part of their organisation like food manufacturers. New technologies and digital transformation can help food manufacturers manage the constant change, but the traditional approach of comprehensive digitalisation planning is often not flexible enough to ensure success. Here, Sean Robinson, software solutions manager at food automation expert Novotek UK and Ireland, explains why the key ingredient for success in flexible food manufacturing are micro-applications.

Food production is truly a sector that operates under the mantra of “reinvent the everyday, every day”. The sector is constantly evolving, whether manufacturers are innovating new product ranges that meet changing consumer tastes or switching packaging materials to extend shelf-life or reduce waste. And these are just examples of substantial shifts; food manufacturers are also regularly making smaller challenges by refining recipes, adapting processes or adjusting ingredient and material supply lines.

Despite — or perhaps because of — the environment of constant change, food processors can benefit more than many other manufacturers from carefully targeted use of data collection, visualisation and analysis solutions. After all, yesterday’s optimisation isn’t particularly optimal if today means a new stock-keeping unit (SKU), a new critical ingredient supplier or a new recipe.

The approach that many businesses take to becoming data-driven is to extensively map out their digitalisation journey, with each aspect comprehensively planned. This doesn’t generally support the flexibility needed in food manufacturing.

Rather than taking this approach, modern solutions make it possible to build or buy micro-applications that share common data infrastructure and even app-building or visualisation tools. This means that impactful new capabilities can be adopted through fast initial works that create re-usable building blocks. Later works then become incremental, rather than potentially having different systems creating overlapping capabilities.

Micro-apps in practice

We can see how this micro-app approach can be put into action by considering one of the most common challenges in food processing: managing the effect of variability in key ingredients, so that yields are maximised with minimal re-work or ingredient waste. It’s likely that a manufacturer would already have some of the information needed to address the challenge. The question is, how can you quickly supplement what’s in place?

It’s a safe bet that the factory has automation and maybe supervisory control and data acquisition (SCADA) systems, so there is an abundance of machine-generated data to tell us about the details of how processes are performing. Focussing more closely on yield performance, we can assume our manufacturer has a lab system where in-process and finished good tests give very clear indicators of how well a product is being made.

From Novotek’s experience, the most common gaps in tackling yield issues come from two areas. The first is supplier quality data, which is often provided either written down or in an electronic format that doesn’t mesh with existing systems. This makes analysis more difficult, because there’s no actual database to work from.

The second area is that the variations in raw materials that affect yields may actually be within the specifications defined for those materials. As such, there may not be an obvious fix. It’s likelier that material data needs to be analysed alongside several process performance and quality performance data points. Understanding the relationships between more than two or three variables will probably mean adding a new kind of analysis tool.

Micro-apps can be highly focussed on the core capabilities required. In this case, the micro-app would provide three core functions. First, it would provide a simple means to capture ingredient quality data as it’s received, into a system that also holds the specific material characteristic specifications and limits – all on a “by-lot” basis. It would also offer a machine learning tool that can help clarify how the range of material quality variation can be managed in relation to what machine settings or recipe adjustments might allow for good final yield and quality results.

Finally, the micro-app would be able to alert production staff to make recommended changes to a recipe or process as different raw material lots are staged for use – an automated monitor of yield/quality risk from material variation. This could be as simple as a new smart alarm sent back to existing SCADA, or a notification on a smartphone.

Industrial software vendors are adapting their offers, in recognition of the trend towards micro-apps aimed at specific business processes. So, the software licensing needed to enable material data collection and quality specification monitoring on a key process would be built around a low user count and narrow set of underlying configuration and integration points, rather than a comprehensive plant-wide project. That can mean starting investments in the low thousands for software and some deployment work.

Some of Novotek’s customers are now progressing through projects defined by such very specific functional needs. Our job at Novotek is to ensure that any new solutions serve the purpose of being able to act as supplements to other such micro-apps in the future.

Next stages

A strategic advantage of micro-apps is that the planning and execution stages are less time-intensive than a far-reaching, plant-wide digitalisation project. Food engineers can do several things to begin reinventing their everyday processes. For example, food manufacturers can deploy predictive downtime applications on key processes. These are apps that can even take into consideration whether the products made have their own impact on failure modes.

Each micro-app reflects an opportunity to make the overall food manufacturing operation more adaptable. This means that innovation in products, processes and business models can be done, all the while knowing that refining and optimising the “new” won’t be held up by tools and practices that are too difficult to adapt from the “old”.

]]>
Free whitepaper: Enhancing data management in utilities https://ideashub.novotek.com/free-whitepaper-enhancing-data-management-in-utilities/ Fri, 20 Aug 2021 10:30:00 +0000 https://ideashub.novotek.com/?p=2748 Innovation has been one of the biggest focuses for utilities operators in recent years, particularly in the water market due to pressures from regulatory bodies. However, innovation is a broad term that offers no indication of the best and most impactful changes to implement.

The best approach may be to let the data dictate where to focus your innovation efforts. Or, if there’s a lack of useful data, then that itself may be the answer.

In this whitepaper, Novotek UK and Ireland explains how utilities operators can get to grips with data management to create an effective data-driven approach to innovation. Covering how to consolidate and modernise assets for data collection, how to make sense of utilities data and which method to use to get the most long-term value from data, the whitepaper is an invaluable resource for utilities operations managers and engineers.

Complete the form below to receive a copy of the whitepaper.

Subscribe to receive the Enhancing data management in utilities whitepaper

* indicates required
]]>
Free whitepaper: Introduction to industrial data https://ideashub.novotek.com/free-whitepaper-introduction-to-industrial-data/ Wed, 18 Aug 2021 17:59:00 +0000 https://ideashub.novotek.com/?p=2745 Data is the backbone of the modern industrial revolution happening around us. However, many business leaders do not know how to effectively manage their data or establish an industrial data strategy that will set them up for success.
In this whitepaper, Novotek UK and Ireland offers a guide to improving your data practices. The whitepaper covers how to develop field-level plans that align with business goals, why the context of data is imperative, how to manage large data quantities and what an effective data strategy looks like.

Complete the form below to receive a copy of the whitepaper.

Subscribe to receive the Introduction to industrial data whitepaper:

* indicates required
]]>
Getting started with food digitalisation https://ideashub.novotek.com/getting-started-with-food-digitalisation/ Mon, 16 Aug 2021 11:09:00 +0000 https://ideashub.novotek.com/?p=2809 The food and beverage industry is one where innovation in product development or design can boast a significant competitive advantage. As such, it’s no surprise that food manufacturers are increasingly considering digitalisation of operations to augment adaptability, improve throughput and strengthen flexibility. Here, Sean Robinson, service leader at food automation software specialist Novotek UK and Ireland, explains how food manufacturers can plan digitalisation in the most effective way.

In the past 12 months, the food industry has been forced to re-evaluate and re-assess its operational priorities. For years, many manufacturers focussed on flexible production to enable diverse product lines and mass customisation, in line with shifting consumer demands. In 2020, this was forced to change, and production efficiency and operational adaptability became the focus. Once more, automation and digital technologies came to the forefront of food manufacturing priorities.

Digitalisation is a word that has been banded around a lot in industrial markets for the past few years, serving as a catch-all phrase encompassing everything that generates, records and communicates data. Unfortunately, as with most amorphous phrases, this leads to confusion among managers about how to introduce these technologies, which causes costly errors in implementation, such as overlapping data collection systems or introduction of technologies that do not serve a strategic purpose.

For food manufacturers at the beginning of their digitalisation journey, the first step is to define an agreed and important goal, which the company can reverse engineer a solution from. Whether looking to deliver on a continuous improvement object that has been identified as part of a formal process, or just illustrating the value of an engineering team unleashed with time to think, it’s key to let the desired improvement dictate what kind of digitalisation will be needed.

For example, if material costs are too high and the agreed goal is to reduce them, a digitalisation project should establish systems that identify the factors influencing this. Understanding the root causes for yield problems could require a combination of machine data, ambient condition data, quality or lab data and information about material quality provided by suppliers. Thinking through where data is readily available, versus where it’s trapped in paper, spreadsheets or isolated automation, will ensure the plan can deliver on the purpose.

Planning at the outset of investing in digitalisation, but some food manufacturers may will have undoubtedly already rushed into digitalisation in years past. For businesses with some digital or automation technologies in place, one of the most valuable things to do is review the lay of the existing digital landscape. The easiest approach to doing this is to apply the ‘three Rs’ to your existing data: reduce systems overlap, reuse data and recycle data.

Reducing data collection system overlap not only makes it easier for managers to identify the source of a specific data set, it also streamlines costs. Why have a downtime system collecting machine event data, a yield analysis system collecting overlapping data and a work in progress tracking system that is separate to both of those? Having three systems collecting fundamentally the same data means duplicated configuration and deployment costs, as well as possible conflict over which one holds the ‘truth’.

An effective data and digitalisation strategy should also aim to use collected data in various calculations to produce several insights. For example, the downtime event data collected for OEE calculations may be part of what’s needed to solve a quality problem. The energy and water data collected for sustainability reporting may hold the key to real savings opportunities. Wherever there is a connection to a data source, managers should think of ways to make sure that a data point only needs to be collected once in order to be used many times.

Finally, offline analysis tools and some of the new analytics packages on the market could mean that old data offers recurring value as a firm chases finer and finer points of improvement. So, it’s important to set up a data management approach and data management platforms that can give you the option of making repeated use of data.

Digitalisation projects can lead to more innovative and effective ways of working for food manufacturers, but they rely on careful planning and strategic implementation. By giving full consideration to the goals to be reached or how data is used within a site, food businesses can ensure their systems are always effectively aligned with their goals.

]]>
The three Rs of automation data https://ideashub.novotek.com/the-three-rs-of-automation-data-infographic/ Wed, 05 May 2021 18:39:00 +0000 https://ideashub.novotek.com/?p=2631

Data is vital in modern industrial operations. However, many businesses often deploy data collection and analytics systems in a way that doesn’t allow them to derive the most value from their data sets. The key to avoiding this is to consider industrial data as an asset in its own right: one that can be optimised to make it more efficient and add greater value.

Applying the three Rs to automation data allows companies to make the most of data. Our infographic below outlines what this means — click the image to view in full quality (opens in new tab):

]]>
Keeping competitive with food automation https://ideashub.novotek.com/keeping-competitive-with-food-automation/ Sat, 01 May 2021 10:54:02 +0000 https://ideashub.novotek.com/?p=2790 With an overall turnover of €1,109bn and more than 4.5mn people employed across the continent, the food and drink industry is undoubtedly one of the most economically important industries in Europe. Add to this the fact that there are 294,000 European companies active in the industry and it becomes plain to see why the ability to remain competitive is vital for food manufacturers. Here, George Walker, managing director of food process automation expert Novotek UK and Ireland, offers practical tips for using automation to stay competitive. 

The food and beverage manufacturing industry is one of narrow margins, high demand and strict regulatory requirements. As such, it’s easy to understand why many manufacturers are turning to higher levels of automation and digital technologies to meet an ever-growing and ever-changing demand from consumers. And as interest around Industry 4.0 and the Industrial Internet of Things (IIoT) has grown, more senior managers at food businesses are considering digitally transforming operations. 

However, the trouble with concepts such as Industry 4.0 is that they are ambiguous. IIoT, for example, includes everything from automatic process control and improved data collection to advanced data analysis and virtual reality (VR) supported maintenance. There are lots of potential benefits offered by this cornucopia of technologies, but they are often too conceptual for most food manufacturers to truly grasp.  

Instead, we must look at the technologies that can offer tangible value to manufacturers. For many, control systems and process automation are the prime areas for development. In fact, a report published by the Food and Drink Federation found that manufacturing process automation was the second biggest focus area for innovation by food manufacturers, with 73 per cent of manufacturers investing in this area. 

Automation is of particular interest for food manufacturers as it offers a meaningful way to achieve the benefits promised by the IIoT. For example, a fourth-generation HMI/SCADA software can oversee and control certain connected processes. As part of a larger networked automation platform — for example, GE Digital’s Predix — this software could contribute to the effective deployment of a smart predictive maintenance program. 

With such a program, food manufacturers can minimise downtime by having a system in place to monitor equipment health and automate certain maintenance tasks in a proactive, predictive manner. However, this can only happen if a manufacturer has suitable quantities of relevant operational data. This comes back to food plant managers ensuring they take the right first steps in their automation journey. 

The first steps 

For food manufacturers making their first moves into modern automation systems, the first step should always be to identify why managers want to automate. This involves developing what we refer to as a technology adoption profile. 

There are two main profiles: the innovator, who wants to experiment and find new ways of operating and developing better products, and the “price-sensitive purchaser”, who has the main aim of reducing downtime, minimising operating expense and maximising margins by making operations as efficient as possible. This profile influences the types of technology that you should invest in as a first step into process improvement. 

Once a manager determines what they want to achieve, the first port of call should be to ensure a system is in place that can collect and store an effective amount of data from machines, sensors and systems. This is where Historian software proves invaluable.  

For food businesses, Historian software ticks the right boxes for traceability and for process management and improvement, because it stores accurate operation and production data. This data should form the basis of any effective automation strategy, as plant managers can easily identify the key areas that require optimisation or improvement. 

Crucially, Historian systems don’t require substantial changes to an existing system configuration; they simply slot into existing technology infrastructure, connecting easily to a wide range of data collection and reporting tools. Some best-in-class Historian systems, such as GE Digital’s Historian, make integration even easier via fast software installation and integration. 

Historically, the challenge here has been one of price. Currently, Historian software is typically built around a model where manufacturers pay upfront for an amount of tags, irrespective of whether they are actively analysed or even used at all. The result is that medium to large size enterprises are paying high costs for 10,000 tags, when they might only need and use 400. Meanwhile, smaller companies are being priced out. 

To tackle this, Novotek has teamed up with GE Digital to provide Enterprise Historian software using a subscription-based model, making the system affordable to food manufacturers of all sizes. With this model, users can store data is several tags but only pay for the tags that they analyse, which reduces the barrier to entry for digitalisation and allows managers to retroactively analyse collected data. 

This model helps food manufacturers in remaining competitive. Not only does the insight provided by the Historian software allow for greater analysis and improvement of processes, but plant managers can attain this without paying over the odds. From here, food manufacturers can determine how their automation journey progresses — whether it’s down the route of innovation or improved overall equipment effectiveness. 

]]>
Futureproofing automation platforms in power https://ideashub.novotek.com/futureproofing-automation-platforms-in-power/ Tue, 20 Apr 2021 10:08:00 +0000 https://ideashub.novotek.com/?p=2856

Every industrial business focuses on uptime as a priority. For manufacturers, this directly relates to productivity and profitability, with any disruption to operations — for example, due to a power failure — being a costly risk. Yet for power utilities companies, uptime is all about securing a continuous supply of power to said manufacturer by ensuring assets are reliably operational. Here, David Evanson, Corporate Vendor Relationship Manager Novotek UK and Ireland, highlights some of the most overlooked factors in automation uptime in power network assets.

The typical power generation and distribution network consists of hundreds of distributed assets, ranging from the generators and motors supporting power generation, to the power poles and infrastructure that distribute that power across long distances. This has been the case for decades, but the number of assets continues to climb as more areas experience greater levels of electrification, adding complexity to the process of managing power networks.

In the years ahead, power networks are only set to become more complex. In 2018, Prithpal Khajuria, business lead and domain expert for power industry at Intel, commented that “there are several new elements coming to the grid, solar panels, added storage, electric vehicles, so the management of the distribution grid is going to become more complex as we go forward.”

The automation layer of a power network is vital in managing this challenge, allowing utilities managers and technicians to remotely monitor assets and easily adjust processes. Integral to this functionality are programmable logic controllers (PLCs) in the field, which already have a complex set of technical requirements that operators must consider when specifying them.

An often overlooked consideration when specifying hardware is futureproofing. For power networks, PLCs might be in operation for over a decade. As such, two other factors become important in selection: environmental conditions and modularity. Some parts of a network are exposed to extended temperature conditions and the PLC must be able to function effectively in this range. Similarly, upgrading PLCs in the future shouldn’t require a complete overhaul of connected automation systems.

From Novotek’s experience providing automation hardware and software to the power industry, part of the reason that operators overlook these considerations is due to the scale of the network. If one in 50 PLCs is failing due to environmental issues, this can at first seem like a nuisance more than a pressing problem. But for larger power generators where networks of 2000 controllers are quite common, this amounts to 40 PLC failures and can severely impede efficient power generation.

Furthermore, when the time comes to modernise and upgrade the PLC or replace it due to a failure, it means ensuring compatibility with the other systems and devices in the automation layer. With some PLCs, operators can find themselves in a situation where only certain models of hardware will communicate effectively, leading to a time-consuming and expensive replacement process.

At Novotek, we recommend choosing open PLCs and automation, which are compatible with the broadest possible range of systems and applications. For example, Emerson’s PACSystems RX3i range of controllers fits this requirement because it is an open controller that can communicate with most modern automation systems. In addition, it also boasts an extended operating temperature that makes it durable in demanding environments and it supports easy migration from outdated controllers, with backwards compatibility for modular kits and built-in programming translation. These factors together make it an ideal option for power network automation.

Although technical capabilities are a core consideration of automation layer devices, futureproofing is equally about environmental and physical factors. They are invaluable to maintain a reliable power generation and distribution network long-term, ensuring uptime for the network and those that rely upon it.

]]>
A secure knowledge base https://ideashub.novotek.com/a-secure-knowledge-base/ Tue, 06 Apr 2021 15:27:00 +0000 https://ideashub.novotek.com/?p=2838 The notion that ideas become reality especially applies to cybersecurity in critical national infrastructure. Security breaches can result in very real losses of water or energy; but ideas around cyber threats are obscured by misconceptions around the nature of such attacks and how to deal with them. Sean Robinson, service leader of automation specialist Novotek UK and Ireland, explains how a compact controller could negate these threats, and improve companies’ internal understanding of cyberattacks.

An annual report by Kaspersky Lab, The State of Industrial Cybersecurity 2018, revealed several interesting facts about how industrial cybersecurity is perceived by businesses and applied to Industrial Control Systems (ICS). The survey of 230 worldwide professionals reveals disconnections between what is feared by businesses, and what’s happening in reality.

For instance, 66 per cent of the surveyed businesses were most concerned about advanced persistent threats (APT), like data leaks and spying (59 per cent), because of their perceived potential impact. In reality, APT’s make up 16 per cent of cybersecurity incidents. Actually, conventional malware and virus outbreaks are becoming the greater problem. These attacks are not overly sophisticated and made up 64 per cent of cybersecurity incidents, last year.

Aside from misconceptions about the external threat landscape, disparities also exist within organisations. In relation to Kaspersky Lab’s survey, technology website tripwire.com cited a report by the SANS Institute. SANS found that, among nearly three-quarters of firms that were confident in their ability to secure their industrial internet of things (IIoT), there were more likely to be different internal perceptions about the effectiveness of their security measures. While leaders and department managers were more likely to have a “rosy outlook” of their security, operational technology departments had a more pessimistic view.

Such misconceptions would be even more of a concern within critical national infrastructures. Cyberattacks against water, energy or chemical supplies can have very real consequences for countries and their populations.

Upgrading control systems

From a hardware and systems perspective, more than half — 54 per cent — of the surveyed businesses identified integrating ICS with IT systems and Internet of Things (IoT) ecosystems as among the most pronounced challenges. This last statistic places a wider challenge faced by plant managers into a whole new context: specifically, how best to achieve space and cost savings by reducing the size and complexity of plant equipment.

Plant managers are turning to new systems to achieve greater levels of flexibility and profitability in their production. This coincides with older programmable automation controller (PAC) systems, like trusted Series 90-30 controllers, reaching the end of their operational lifespans. In many cases, these 90-30 systems have been relied upon as integral to plant operations for upwards of 25 years.

How can plant managers effectively upgrade their systems, while ensuring that cybersecurity measures keep up with the rate of technology adoption — and the external threat landscape? Fortunately, answers lie in smart hardware and its role in helping manufacturers enhance process flexibility and performance.

Centralised security

One solution lies in better control. The RSTi-EP CPE100 is a compact controller for PAC systems — specifically, to control the RX3i CPU from Emerson which has emerged as a popular and effective upgrade for 90-30 systems. In a nutshell, the RSTi-EP CPE100 leverages the power and flexibility of PAC systems in smaller applications.

The RSTi-EP CPE100, entire PAC systems can be programmed in stand-alone applications, or the system can be used as an auxiliary controller in larger process applications that use the RX3i. Not only does the system leverage the power and flexibility of PAC systems in smaller applications, there are also benefits in terms or cybersecurity — indeed, the RSTi CPE100 is secure by design.

With the system, companies can apply optimised security right from the very start. RSTi CPE100 incorporates technologies like Trusted Platform Modules and secure, trusted, and measured boot. It allows centralised configurations, so that encrypted firmware updates can be executed from a secure central location. Specifically, a suite of cybersecurity technologies can help prevent unauthorized updates. Meanwhile, built-in security protocols can protect against man-in-the-middle attack (MITM) — where the attacker secretly inters with communications between two parties — and denial-of-service (DoS) attacks.

Speaking of the “man-in-the-middle”, another key takeaway from Kaspersky Lab’s report is that, going forward, industrial companies must also pay more attention to employees’ understanding and awareness of cyber threats. Because the RSTi-EP CPE100 can streamline application development and integration, a further benefit of the system is that it simplifies training for operators and maintenance workers.

While cyberattacks on ICS computers are misunderstood by many within industry, it’s necessary to overcome these misconceptions while keeping up with the best cybersecurity measures. Novotek recommends that managers should pay attention to system security from the very beginning of their integration. The more critical the application, the more important it is that ideas surrounding cyberattacks accurately pre-empt the realities.

]]>